
primitive data types, variables and constants > console > Borland C++ Compiler

Borland C++ Compiler: Primitive Data Types, Variables and
Constants

Introduction

A primitive data type is a data type provided as a basic building block by a programming language.
It is predefined by the programming language and is named by a reserved keyword or keywords. In
C++, primitive data types are used to define variables and constants. A variable's or constant's data
type indicates what sort of value it represents, such as whether it is an integer, a floating-point
number or a character, and determines the values it may contain and the operations that may be
performed on it.

In C++ primitive data types can be used to represent data as characters, integers, floating-point
numbers and boolean values, which are represented by data types as follows:

character A character is a text character.

char The char data type can be used to represent a character.

wchar_t The wchar_t data type can be used to represent a wide
character.

integer An integer is a number without a fractional component.

In C++, declaration of most integer types can be prefixed with modifier
signed or unsigned to indicate if the integer is signed, i.e. if its value
contains an indication of whether it is positive or negative and/or modifier
short or long to alter the range of values the integer can contain.

char The char data type can be used to represent a small integer.

Declaration of char type can be prefixed with modifier
signed or unsigned.

int The int data type represents an integer.

Declaration of int type can be prefixed with modifier signed
or unsigned and/or modifier short or long. If prefixed
with any of these modifiers, the int keyword can be omitted.

wchar_t The wchar_t data type can be used to represent a short integer.

Declaration of wchar_t type cannot be prefixed with any
modifier. Whether a wchar_t value is signed or unsigned
varies between C++ compilers. In the Borland C++ Compiler a
wchar_t value is unsigned.

primitive data types, variables and constants > console > Borland C++ Compiler

floating-point numberA floating-point number is a real number, or a number that may contain a
fractional component. Floating-point types often contain an exponent that
represents the number multiplied by 10x.

float The float data type represents a single-precision floating-
point number.

double The double data type represents a double-precision floating-
point number.

Declaration of double type can be prefixed with modifier
long to provide an extended-precision floating-point number.

boolean value A boolean value is a binary value, which can be in one of two states, often
true or false.

bool The bool data type represents a boolean value.

This article demonstrates declaration and use of each primitive data type provided by the C++
programming language.

primitive data types, variables and constants > console > Borland C++ Compiler

The primitive data types available in C++ are as follows:

Type Description Bytes * Range *

char character or small integer 1 signed: -128 to 127
unsigned: 0 to 255

int integer short: 2
normal: 4
long: 4

signed short: -32,768 to 32,767
unsigned short: 0 to 65,535
signed: -2,147,483,648 to

2,147,483,647
unsigned: 0 to

4,294,967,295
signed long: -2,147,483,648 to

2,147,483,647
unsigned long: 0 to

4,294,967,295

bool boolean value 1 true or false

float floating-point number 4 1.17549*10-38 to 3.40282*1038

double double-precision floating-
point number

8 2.22507*10-308 to 1.79769*10308

long double extended-precision floating-
point number

10 3.36210*10-4932 to 1.18973*104932

wchar_t wide character or short
integer

2 1 wide character

* The values in columns Bytes and Range depend on the system the program is compiled for and
the compiler used. The values shown above are for the Borland C++ compiler and generally
represent values found on most 32-bit systems. For other systems, the general specification is
that int has the natural size suggested by the system architecture (one word) and the four integer
types char, short int, int and long int must each be at least as large as the one
preceding it, with char always being 1 byte in size. The same applies to the floating-point types
float, double and long double, where each one must provide at least as much precision
as the preceding one.

The C++ programming language is strongly-typed, which means that all variables and constants
must first be declared before they can be used.

primitive data types, variables and constants > console > Borland C++ Compiler

This article demonstrates declaration and use of constants and variables of each primitive data type
provided by the C++ programming language.

Concepts

value A value is a sequence of bits that is interpreted according to some
data type. It is possible for the same sequence of bits to have
different values, depending on the type used to interpret its meaning.

In the primitiv program, values as literal constants are assigned to
variables and symbolic constants.

data Data is a measurement which can be organised to become
information.

In English, the word datum refers to “something given”. The word
data is plural in English, but it is commonly treated as a mass noun
and used in the singular. In everyday language, data is a synonym
for information. However, in exact science there is a clear distinction
between data and information, where data is a measurement that may
be disorganised and when the data becomes organised it becomes
information.

The values in the primitiv program are data organised according to
their data type.

bit The word bit is short for binary digit, which is the smallest unit of
information on a computer. A single bit can hold only one of two
values, which are usually represented by numbers 0 and 1.

More meaningful information is obtained by combining consecutive
bits into larger units. For example, a byte is a unit of information
composed of eight consecutive bits.

All values, including those used in the primitiv program, are
represented by a sequence of bits.

byte A byte is a unit of measurement of information storage, commonly
composed of eight bits. If composed of eight bits, a single byte can
hold one of 256 (28) values.

Data can be represented in a single byte or a combination of bytes.

All values used in the primitiv program are represented by a single
byte or a combination of bytes.

primitive data types, variables and constants > console > Borland C++ Compiler

character A character is a text character.

The primitiv program declares character variables of type char and
wchar_t.

integer An integer is a number without a fractional component.

The primitiv program declares integer variables of type char, int
and wchar_t.

floating-point number A floating-point number is a real number, or a number that may
contain a fractional component.

The primitiv program declares floating-point variables of type
float and double.

boolean value A boolean value is a binary value, which can be in one of two states,
often true or false.

The primitiv program declares boolean variables of type bool.

data type A data type, or type, is a classification of a particular kind of
information. It can be defined by its permissible values and
operations.

Data types used in the primitiv program are C++ primitive data types.

primitive data type A primitive data type is a data type provided as a basic building
block by a programming language. It is predefined by the
programming language and is named by a reserved keyword or
keywords.

This article demonstrates declaration and use of each primitive data
type provided by the C++ programming language.

type specifier The data type of an entity is specified using a data type specifier,
sometimes called a type specifier.

Data types specified in the primitiv program are the C++ primitive
data types.

primitive data types, variables and constants > console > Borland C++ Compiler

identifier An identifier is a token that names an entity.

The concept of an identifier is analogous to that of a name. Naming
entities makes it possible to refer to them, which is essential for any
kind of symbolic processing.

Variables and constants in the primitiv program are represented by
identifiers.

keyword A keyword is a word or identifier that has a particular meaning to its
programming language.

Keywords are used in the primitiv program to specify the types of
variables and constants and to modify them.

modifier A modifier keyword, or modifier, is a keyword that modifies an entity.

Modifiers unsigned, short, long and const are used in the
primitiv program.

declaration statement A declaration statement, often referred to simply as a declaration,
specifies aspects of an entity, such as its dimensions, identifier and
type and is used to announce its existence. This is important in C++
which requires variables and constants to be declared before use.

Variables and constants are declared in the primitiv program.

#define The #define preprocessor directive declares a constant.

Constant cid in the primitiv program is declared using a #define
directive.

primitive data types, variables and constants > console > Borland C++ Compiler

Primitive data types are used in variables and constants. C++ has two kinds of constants: symbolic
constants and literal constants.

variable A variable is a symbolic representation denoting a value or expression that
can change. It is a symbol or identifier that stands for a value. For example,
in expression
b + c

b and c may be variables.

The primitiv program uses variables representing each of the primitive data
types.

symbolic constant A symbolic constant, constant variable, or constant for short, is a variable
whose value cannot be changed once it is initially bound to a value. A
constant variable cannot be assigned to. It is specified only once, but can be
referenced multiple times.

A constant can be declared by using either the #define preprocessor
directive or the const keyword. A constant declared using the const
keyword must be assigned a value when declared, and then that value can
not be changed.

A constant is declared in the primitiv program using both a #define
directive and a statement containing the const keyword.

literal constant A literal constant, or literal, is a literal value inserted into source code. It is
a constant because its value cannot be changed.

The primitiv program assigns literal values to variables representing each of
the primitive data types.

primitive data types, variables and constants > console > Borland C++ Compiler

A literal constant literally declares its value, which is directly inserted into the source code of a
program. The following kinds of data can be represented by a literal:

character A single character can be inserted into code by enclosing it in single quotes
''.

For example, 'a' represents character a.

A character literal can have an L prefix that specifies a double-byte literal.

string A string of characters can be inserted into code by enclosing the characters
in double quotes "".

For example, "Hello" represents word “Hello”.

integer An integer can be inserted into code as a number without a decimal point or
exponent.

For example, 1234 represents integral number 1234.

An integer literal can have a u or U suffix that means it is unsigned and/or
an l or L suffix that means it is a long integer. However, these suffixes are
often optional, as the compiler can frequently tell from context what kind of
literal is required.

floating-point A floating-point number can be inserted into code as a number with a
decimal point and/or exponent.

For example, 1.234 represents floating-point number 1.234, 3e2
represents floating-point number 300 and 1.234e2 represents floating-
point number 123.4.

By default, a floating-point literal has a type of double. To specify a
float value, the f or F suffix can be used. A floating-point literal can also
have an l or L suffix to make it long double.

primitive data types, variables and constants > console > Borland C++ Compiler

Source Code

The source code listing is as follows:

/*
 primitiv.cpp

 Primitive data types.

 environment: language C++
 platform Windows console
*/

#include <stdio.h>

#define cid 234

int main()
{
 // Declare variables.

 char c ; // character
 wchar_t w ; // wide character
 int in , iz , ip , id , ic ; // integer
 float fn , fz , fp , ff ; // floating-point
 bool bf , bt ; // boolean

 // floating-point

 float fm6 , fm5 , fm4 , fm3 , fm2 , fm1 ,
 f0 , f1 , f2 , f3 , f4 , f5 , f6 , f7 ;

 // range: integer

 char scn , scp ;
 unsigned char uc ;
 short int ssn , ssp ;
 unsigned short int us ;
 int sin , sip ;
 unsigned int ui ;
 long int sln , slp ;
 unsigned long int ul ;
 wchar_t uw ;

 // range: floating-point

 float fns , fnl , fps , fpl ;
 double dns , dnl , dps , dpl ;
 long double ldns , ldnl , ldps , ldpl ;

 // Populate variables.

 // character

 c = 'c' ;
 char p = 'p' ;
 w = L'w' ;

primitive data types, variables and constants > console > Borland C++ Compiler

 // integer

 const int cic = 345 ;

 in = -123 ;
 iz = 0 ;
 ip = 123 ;
 id = cid ;
 ic = cic ;

 // floating-point

 fn = -123 ;
 fz = 0 ;
 fp = 123 ;
 ff = 12.3 ;

 fm6 = 1.23e-6 ;
 fm5 = 1.23e-5 ;
 fm4 = 1.23e-4 ;
 fm3 = 1.23e-3 ;
 fm2 = 1.23e-2 ;
 fm1 = 1.23e-1 ;
 f0 = 1.23e0 ;
 f1 = 1.23e1 ;
 f2 = 1.23e2 ;
 f3 = 1.23e3 ;
 f4 = 1.23e4 ;
 f5 = 1.23e5 ;
 f6 = 1.23e6 ;
 f7 = 1.23e7 ;

 // boolean

 bf = false ;
 bt = true ;

 // range: integer

 scn = -128 ;
 scp = 127 ;
 uc = 255 ;

 ssn = -32768 ;
 ssp = 32767 ;
 us = 65535 ;

 sin = -2147483648 ;
 sip = 2147483647 ;
 ui = 4294967295 ;

 sln = -2147483648 ;
 slp = 2147483647 ;
 ul = 4294967295 ;

 uw = 65535 ;

 // range: floating-point

primitive data types, variables and constants > console > Borland C++ Compiler

 fns = -1.17549e-38 ;
 fnl = -3.40282e+38 ;
 fps = 1.17549e-38 ;
 fpl = 3.40282e+38 ;

 dns = -2.22507e-308 ;
 dnl = -1.79769e+308 ;
 dps = 2.22507e-308 ;
 dpl = 1.79769e+308 ;

 ldns = -3.36210e-4932 ;
 ldnl = -1.18973e+4932 ;
 ldps = 3.36210e-4932 ;
 ldpl = 1.18973e+4932 ;

 // Display variables.

 printf("char ") ;
 printf("%c" , c) ;
 printf(" ") ;
 printf("%c" , p) ;
 printf("\n") ;

 printf("wchar_t %c\n" , w) ;
 printf("int %d %d %d\n" , in , iz , ip) ;
 printf("float %g %g %g %g\n" , fn , fz , fp , ff) ;
 printf(
 " %g %g %g %g %g %g\n" , fm6 , fm5 , fm4 , fm3 , fm2 , fm1
) ;
 printf(
 " %g %g %g %g %g %g %g %g\n" ,
 f0 , f1 , f2 , f3 , f4 , f5 , f6 , f7
) ;
 printf("bool %d %d\n" , bf , bt) ;
 printf("constants %d %d\n" , id , ic) ;

 // range

 printf("\nrange:\n\n") ;

 printf("char %d %d %u\n" , scn , scp , uc) ;
 printf("short %hd %hd %hu\n" , ssn , ssp , us) ;
 printf("int %d %d %u\n" , sin , sip , ui) ;
 printf("long %ld %ld %lu\n" , sln , slp , ul) ;
 printf("wchar_t %u\n" , uw) ;

 printf("float %g %g %g %g\n" , fns , fnl , fps , fpl) ;
 printf("double %g %g %g %g\n" , dns , dnl , dps , dpl) ;
 printf("long double %Lg %Lg %Lg %Lg\n" , ldns , ldnl , ldps , ldpl) ;
}

primitive data types, variables and constants > console > Borland C++ Compiler

Compiling and Running

1. Save the source code listing into a file named primitiv.cpp.

2. Launch a Windows command prompt.

3. Navigate to the directory primitiv.cpp was saved in.

4. To compile the program, type:

> BCC32 primitiv

5. To run the program, type

> primitiv

Code Explanation

#define cid 234

The #define preprocessor directive declares a constant.

This directive declares a constant identified by cid containing value of 234.

primitive data types, variables and constants > console > Borland C++ Compiler

char c ; // character

A variable is a symbolic representation denoting a value or expression. The format of a simple
variable declaration is as follows:

type identifier ;

where

type is the type specifier of the variable.

The type specifier in the declaration statement above is char, which is used to
specify a character.

identifier is the identifier by which it will be possible to refer to the variable.

The identifier in the declaration statement above is c.

; closes the declaration and delimits it from the next statement.

All statements in C++, including the declaration statement above, are closed
with the semicolon character ;.

The statement above declares a character variable identified by c.

wchar_t w ; // wide character

This statement declares a wide character variable.

primitive data types, variables and constants > console > Borland C++ Compiler

int in , iz , ip , id , ic ; // integer

Multiple variables of the same type can be declared in a single declaration statement. The format of
a multiple variable declaration is as follows:

type identifier[, identifier[, identifier[, ...]]] ;

where

type is the type specifier of the variables.

The type specifier in the declaration statement above is int, which specifies
integers.

identifier is the identifier by which it will be possible to refer to each variable.

The identifiers in the declaration statement above are in, iz, ip, id and ic.

, delimits the variables being identified.

All multiple declarations in C++, including the declaration above, delimit the
variables with commas ,.

; closes the declaration and delimits it from the next statement.

All statements in C++, including the declaration statement above, are closed
with the semicolon character ;.

The statement above declares multiple integer variables identified by in, iz, ip, id and ic.

float fn , fz , fp , ff ; // floating-point
bool bf , bt ; // boolean

These statements declare floating-point and boolean variables.

float fm6 , fm5 , fm4 , fm3 , fm2 , fm1 ,
 f0 , f1 , f2 , f3 , f4 , f5 , f6 , f7 ;

The floating-point variables declared in this statement are used to demonstrate a range of floating-
point values.

primitive data types, variables and constants > console > Borland C++ Compiler

char scn , scp ;

This statement declares variables for use as signed small integers.

The following declarations are equivalent:

 char scn , scp ;
signed char scn , scp ;

unsigned char uc ;

This statement declares a variable for use as an unsigned small integer.

short int ssn , ssp ;

This statement declares signed short integer variables.

The following declarations are equivalent:

 short int ssn , ssp ;
signed short int ssn , ssp ;
 short ssn , ssp ;
signed short ssn , ssp ;

unsigned short int us ;

This statement declares an unsigned short integer variable.

The following declarations are equivalent:

unsigned short int us ;
unsigned short us ;
 wchar_t us ;

int sin , sip ;

This statement declares signed integer variables.

The following declarations are equivalent:

 int sin , sip ;
signed int sin , sip ;
signed sin , sip ;

primitive data types, variables and constants > console > Borland C++ Compiler

unsigned int ui ;

This statement declares an unsigned integer variable.

The following declarations are equivalent:

unsigned int ui ;
unsigned ui ;

long int sln , slp ;

This statement declares signed long integer variables.

The following declarations are equivalent:

 long int sln , slp ;
signed long int sln , slp ;
 long sln , slp ;
signed long sln , slp ;

unsigned long int ul ;

This statement declares an unsigned long integer variable.

The following declarations are equivalent:

unsigned long int ul ;
unsigned long ul ;

wchar_t uw ;

This statement declares an unsigned short integer variable.

The following declarations are equivalent:

 wchar_t uw ;
unsigned short int uw ;
unsigned short uw ;

 float fns , fnl , fps , fpl ;
 double dns , dnl , dps , dpl ;
long double ldns , ldnl , ldps , ldpl ;

These statements declare variables for each of the primitive floating-point types provided by the C+
+ language.

primitive data types, variables and constants > console > Borland C++ Compiler

c = 'c' ;

A character variable stores a character as a single byte, which can contain one of 256 discrete
values. A character variable can therefore contain one of 256 distinct characters.

To assign is to set or re-set a value denoted by an identifier. An assignment statement uses the
assignment operator = to assign the value of an expression to an entity. It is formatted as follows:

assignee = expression ;

where

assignee is the entity (variable or constant) to which the value is assigned.

The assignee in the statement above is variable c.

= is the assignment operator.

The assignment operator in the statement above, as in all assignment
statements is denoted by the equal character =.

expression is the expression that is evaluated.

The expression in the statement above is literal constant 'c'.

; closes the statement and delimits it from the next statement.

All statements in C++, including the statement above, are closed with the
semicolon character ;.

The statement above assigns literal value “c” to character variable c.

primitive data types, variables and constants > console > Borland C++ Compiler

char p = 'p' ;

A declaration and assignment can be combined into a single statement. A combined declaration and
assignment statement contains the elements of both a declaration statement and an assignment
statement, and is formatted as follows:

type identifier = expression ;

where

type is the type specifier of the entity being declared.

The type specifier in the statement above is char, which is used to specify a
character.

identifier is the identifier by which it will be possible to refer to the entity.

The identifier in the statement above is p.

= is the assignment operator.

The assignment operator in the statement above, as in all assignment
statements is denoted by the equal character =.

expression is the expression that is evaluated.

The expression in the statement above is literal constant 'p'.

; closes the statement and delimits it from the next statement.

All statements in C++, including the statement above, are closed with the
semicolon character ;.

The statement above declares a character variable identified by p and assigns literal value “p” to it.

w = L'w' ;

A wide character variable stores a character in two bytes, which can contain one of 65,536 discrete
values. A double-byte literal is written by prefixing the literal with L.

This statement assigns literal value “w” to wide character variable w.

const int cic = 345 ;

A constant can be declared in the same way as a variable, preceded by the const modifier.

This statement declares an integer constant identified by cic and assigns literal value 345 to it.

primitive data types, variables and constants > console > Borland C++ Compiler

in = -123 ;
iz = 0 ;
ip = 123 ;

A signed integer variable can contain positive and negative integral values.

These statements assign literal values -123, 0 and 123 to integer variables in, iz and ip
respectively.

id = cid ;
ic = cic ;

Valid expressions in an assignment statement include literal and symbolic constants and variables.

These statements assign the value of symbolic constant cid to integer variable id and integer
symbolic constant cic to integer variable ic.

fn = -123 ;
fz = 0 ;
fp = 123 ;
ff = 12.3 ;

A floating-point variable can contain positive and negative values and may also contain a fractional
component.

These statements assign literal values -123, 0, 123 and 12.3 to floating-point variables fn, fz, fp
and ff respectively.

primitive data types, variables and constants > console > Borland C++ Compiler

fm6 = 1.23e-6 ;
fm5 = 1.23e-5 ;
fm4 = 1.23e-4 ;
fm3 = 1.23e-3 ;
fm2 = 1.23e-2 ;
fm1 = 1.23e-1 ;
f0 = 1.23e0 ;
f1 = 1.23e1 ;
f2 = 1.23e2 ;
f3 = 1.23e3 ;
f4 = 1.23e4 ;
f5 = 1.23e5 ;
f6 = 1.23e6 ;
f7 = 1.23e7 ;

Floating-point types can contain an exponent that represents the number multiplied by 10<x>. This is
represented by appending e<x> to the number where <x> represents a power of 10.

These statements assign literal values to floating-point variables as follows:

1.23 * 10-6 fm6
1.23 * 10-5 fm5
1.23 * 10-4 fm4
1.23 * 10-3 fm3
1.23 * 10-2 fm2
1.23 * 10-1 fm1
1.23 * 100 f0
1.23 * 101 f1
1.23 * 102 f2
1.23 * 103 f3
1.23 * 104 f4
1.23 * 105 f5
1.23 * 106 f6
1.23 * 107 f7

When the primitiv program runs these variables are displayed as 1.23e-006, 1.23e-005,
0.000123, 0.00123, 0.0123, 0.123, 1.23, 12.3, 123, 1230, 12300, 123000, 1.23e
+006 and 1.23e+007 respectively. Each number is displayed with or without the decimal point
or exponent as appropriate to make the number readable.

bf = false ;
bt = true ;

A boolean value is a binary value, or one that can be in one of two states, often true or false.

These statements assign literal values false and true to boolean variables bf and bt respectively.

primitive data types, variables and constants > console > Borland C++ Compiler

scn = -128 ;
scp = 127 ;
uc = 255 ;

ssn = -32768 ;
ssp = 32767 ;
us = 65535 ;

sin = -2147483648 ;
sip = 2147483647 ;
ui = 4294967295 ;

sln = -2147483648 ;
slp = 2147483647 ;
ul = 4294967295 ;

uw = 65535 ;

The range of values that can be contained in each integer type is as follows:

char signed: -128 to 127
unsigned: 0 to 255

int signed short: -32768 to 32767
unsigned short: 0 to 65535
signed: -2147483648 to 2147483647
unsigned: 0 to 4294967295
signed long: -2147483648 to 2147483647
unsigned long: 0 to 4294967295

wchar_t unsigned: 0 to 65535

The statements above assign the minimum and maximum signed and maximum unsigned literal
values to variables of each of the integer types.

The statements assigning literal -2147483648 to sin and sln cause the following warning to be
issued:

Negating unsigned value in function main()

This warning is issued because the absolute value of the literal is larger than the largest permissible
positive value for a signed integer, and so an unsigned integer is used. If literal -2145483647 is
used instead this warning is not issued. The warning, however, is a warning and not an error, and
the program still compiles successfully.

primitive data types, variables and constants > console > Borland C++ Compiler

fns = -1.17549e-38 ;
fnl = -3.40282e+38 ;
fps = 1.17549e-38 ;
fpl = 3.40282e+38 ;

dns = -2.22507e-308 ;
dnl = -1.79769e+308 ;
dps = 2.22507e-308 ;
dpl = 1.79769e+308 ;

ldns = -3.36210e-4932 ;
ldnl = -1.18973e+4932 ;
ldps = 3.36210e-4932 ;
ldpl = 1.18973e+4932 ;

The range of absolute values that can be contained in each floating-point type is as follows:

float 1.17549*10-38 to 3.40282*1038

double 2.22507*10-308 to 1.79769*10308

long double 3.36210*10-4932 to 1.18973*104932

The statements above assign the minimum and maximum positive and negative literal values to
variables of each of the floating-point types.

Extended-precision floating-point variables can contain values outwith the range that can easily be
displayed using the printf function. In the primitiv program, values -3.36210*10-4932,
-1.18973*104932, 3.36210*10-4932 and 1.18973*104932 are displayed as 0, -INF (negative infinity), 0
and +INF (positive infinity) respectively.

printf("%c" , c) ;

Variables and literal and symbolic constants can be printed to the standard output stream using the
printf function.

To print a variable or symbolic constant using printf, a tag is included in the format argument
(the first argument passed to the printf function). If a tag is included in the format argument,
an additional argument must be passed to the printf function containing the value to be printed.
When the format argument is printed to the standard output stream, each tag is replaced by the
value of its corresponding argument. The first character in a tag is the % character, which identifies
that a tag is being included. The last character in a tag is the specifier which defines the type of the
tag. In this statement, the tag is %c and the specifier is therefore c, which specifies that the tag is to
be replaced by a character.

This statement prints the value of char variable c as a character to the standard output stream.

primitive data types, variables and constants > console > Borland C++ Compiler

printf("\n") ;

A literal constant can contain characters that are outwith the normal alphanumeric range. To
include such a character, an escape sequence can be used to represent it. The \n escape sequence
represents a new-line character. A new-line character indicates the end of the current line and
causes the next character to be displayed on the following line.

This statement prints a new-line character to the standard output stream.

printf("wchar_t %c\n" , w) ;

The format argument passed to the printf function in this statement consists of text containing
a character tag, which is replaced by the value of wide character variable w.

Since the value of w is “w”, the text printed to the standard output stream by this statement is
“wchar_t w” followed by a new-line character.

printf("int %d %d %d\n" , in , iz , ip) ;

If multiple values are to be printed to the standard output stream, instead of using repeated
statements, a format argument containing multiple tags can be passed to the printf function.
For each tag included in the format argument, a corresponding additional argument containing the
value to be printed must also be passed.

The tags in this statement use the d specifier, which specifies that each tag is to be replaced by a
signed decimal integer.

This statement prints text including the values of int variables in, iz and ip to the standard
output stream.

printf("float %g %g %g %g\n" , fn , fz , fp , ff) ;

The tags in this statement use the g specifier, which specifies that each tag is to be replaced by a
decimal floating-point number, each number being displayed with or without the decimal point or
exponent as appropriate to make the number readable.

This statement prints text including the values of float variables fn, fz, fp and ff to the
standard output stream.

printf("bool %d %d\n" , bf , bt) ;

This statement prints text including the values of bool variables bf and bt to the standard output
stream. The d specifier in the tags causes the values to be converted to integers, where true is
converted to 1 and false is converted to 0.

primitive data types, variables and constants > console > Borland C++ Compiler

printf("char %d %d %u\n" , scn , scp , uc) ;

The u specifier in a tag specifies that the tag is to be replaced by an unsigned decimal integer.

This statement prints text including the values of char variables scn and scp as signed integers
and unsigned char variable uc as an unsigned integer.

printf("short %hd %hd %hu\n" , ssn , ssp , us) ;

An integer specifier in a tag can be prefixed with length definition h, which interprets the length of
the corresponding argument as short.

This statement prints text including the values of short int variables ssn and ssp as signed
short integers and unsigned short int variable us as an unsigned short integer.

printf("long %ld %ld %lu\n" , sln , slp , ul) ;

An integer specifier in a tag can be prefixed with length definition l, which interprets the length of
the corresponding argument as long.

This statement prints text including the values of long int variables sln and slp as signed
long integers and unsigned long int variable ul as an unsigned long integer.

printf("long double %Lg %Lg %Lg %Lg\n" , ldns , ldnl , ldps , ldpl) ;

A floating-point specifier in a tag can be prefixed with length definition L, which interprets the
corresponding argument as long double.

This statement prints text including the values of long double variables ldns, ldnl, ldps
and ldpl as extended-precision floating-point numbers.

Extended-precision floating-point variables can contain values outwith the range that can easily be
displayed using the printf function. This statement prints ldns, ldnl, ldps and ldpl values
-3.36210*10-4932, -1.18973*104932, 3.36210*10-4932 and 1.18973*104932 as 0, -INF, 0 and +INF
respectively.

primitive data types, variables and constants > console > Borland C++ Compiler

Terms

assign To assign is to set or re-set a value denoted by a variable name.

Values are assigned to each of the variables and constants declared in
the primitiv program.

assignment statement An assignment statement assigns a value to a variable. The
assignment statement often allows a variable to contain different
values at different times during program execution.

Values in the primitiv program are assigned using assignment
statements.

assignment operator An assignment statement uses the assignment operator = to assign
the value of an expression to an entity.

Assignment statements in the primitiv program use the assignment
operator.

primitive data types, variables and constants > console > Borland C++ Compiler

Further Comments

Declarations

The declaration formats provided earlier in this article were simplified to explain their use in
context. A more complete outline of the format of a variable or constant declaration is as follows:

[const][modifiers]type
identifier[= expression][, identifier[= expression][, ...]]
;

where

const is the const keyword and indicates that a constant is being declared. If the
const modifier is omitted, a variable is declared.

modifiers modify the range and precision of the variable or constant and whether it can
contain negative numbers.

type is the type specifier of the variable or constant.

identifier is the identifier by which it will be possible to refer to the variable or constant.

= is the assignment operator = and indicates that the value of an expression is to
be assigned.

expression is the expression that is evaluated.

, delimits the variables or constants being identified.

; closes the statement and delimits it from the next statement.

In C++ there are two ways to initialise variable values during declaration: one, known as c-like
initialisation, is to use the assignment operator = to assign the initial value as described above; the
other, known as constructor initialisation, is to enclose the initial value between parentheses ().
For example, the following are equivalent:

int a = 123 ;
int a(123) ;

primitive data types, variables and constants > console > Borland C++ Compiler

Characters

Characters are represented by various encoding schemes and character sets:

SBCS In the SBCS (single-byte character set) encoding scheme, all characters are exactly one
byte long. ASCII is an example of an SBCS.

Single-byte characters are represented by the char type.

MBCS An MBCS (multi-byte character set) encoding contains some characters that are one
byte long and others that are more than one byte long. The MBCS schemes used in
Windows contain two character types: single-byte characters and double-byte
characters. Since the largest multi-byte character used in Windows is two bytes long,
the term double-byte character set, or DBCS, is commonly used in place of MBCS.

Multi-byte characters are represented by the char type.

Unicode Unicode is an encoding standard in which all characters are two bytes long. Unicode
characters are sometimes called wide characters because they are wider (use more
storage) than single-byte characters.

Unicode characters are represented by the wchar_t type.

The wchar_t data type in ANSI/ISO C is intended to represent wide characters. Wide character is
a vague term used to represent a data type that is richer than the traditional 8-bit characters. It is not
the same thing as Unicode.

primitive data types, variables and constants > console > Borland C++ Compiler

Floating-Point Storage

Floating-point representations vary from machine to machine. By far the most common is the
IEEE-754 standard.

An IEEE-754 float (4 bytes) or double (8 bytes) has three components (there is also an
analogous 96-bit extended-precision format under IEEE-854): a sign bit telling whether the number
is positive or negative, an exponent giving its order of magnitude, and a mantissa specifying the
actual digits of the number. The bit layouts used by the Borland C++ Compiler to represent
floating-point numbers are as follows:

float s eeeeeeee mmmmmmm,mmmmmmmm,mmmmmmmm

double s eee,eeeeeeee mmmm,mmmmmmmm,mmmmmmmm,mmmmmmmm,mmmmmmmm,mmmmmmmm,mmmmmmmm

long
double

s eeeeeee,eeeeeeee
mmmmmmmm,mmmmmmmm,mmmmmmmm,mmmmmmmm,mmmmmmmm,mmmmmmmm,mmmmmmmm,mmmmmmmm

These bit layouts illustrate the bytes used in sequence with spaces and commas added for clarity.
The letters used are as follows:

s = sign; e = exponent; m = mantissa

The absolute value is mantissa * 2exponent. Floating-point values are stored as binary fractions, so that
0.1 equates to ½. The place values to the right of the binary point are 2-1, 2-2, etc., just as the place
values to the right of the decimal point are 10-1, 10-2, etc. in decimal.

There is a potential problem when storing both a mantissa and an exponent: 2*10-1 = 0.2*100 =
0.02*101 and so on. This could correspond to different bit patterns representing the same quantity,
which would be wasteful. This problem is circumvented by interpreting the whole mantissa as
being to the right of the binary point, with an implied 1 always present to the left of the binary
point. Unless the number is zero, it will contain at least one 1. The number is shifted so that the
most significant 1 is the only digit to the left of the binary point, the digits after the binary point are
stored in the mantissa and the exponent is adjusted appropriately. For example, decimal 10 = binary
1010 = 1.01*23. 010000... is stored in the mantissa and the exponent is adjusted to represent
3. If the number is zero every bit in the variable is set to zero. If the exponent contained the exact
power of two to which the number was raised it would be impossible to store the number 1 because
1 = binary 1.0*20 and storing the number would set every bit to zero, which would be interpreted
as 0. The solution to this is to add a number to the exponent (normally half its range) when storing
it. For example, the exponent of a float is shift-127 encoded, meaning that the actual exponent is
eeeeeeee minus 127. When storing the number 1, the value of the exponent is therefore 127.

primitive data types, variables and constants > console > Borland C++ Compiler

There are a number of bit patterns in a floating-point number that constitute special cases. These
are as follows:

zero Every bit in the sign, exponent and mantissa is reset (set to 0).

infinity Every bit in the exponent is set (set to 1) and every bit in the mantissa is reset. The sign
can be used to indicate positive or negative infinity.

not-a-
number
(NaN)

Every bit in the exponent is set and any bit in the mantissa is set. The sign can be used
to indicate positive or negative NaN.

A NaN value is generated as the result of an operation that does not make sense, for
example, a non-real number or the result of an operation like infinity times zero.

In general: value = (<sign> ? -1:1) * 2<exponent> * 1.<mantissa bits> where 1.<mantissa bits> is in
binary

To clarify, some examples of float values follow:

Value Sign Exponent Mantissa

 0 0 00000000 0000000,00000000,00000000
 1 0 01111111 0000000,00000000,00000000
-1 1 01111111 0000000,00000000,00000000
 3 0 10000000 1000000,00000000,00000000
 0.5 0 01111110 0000000,00000000,00000000
 1.17549435082229000000e-038 0 00000001 0000000,00000000,00000000
 1.40129846432482000000e-045 0 00000000 0000000,00000000,00000001
 3.40282346600000000000e+038 0 11111110 1111111,11111111,11111111
+INF 0 11111111 0000000,00000000,00000000
-INF 1 11111111 0000000,00000000,00000000
+NaN 0 11111111 1000000,00000000,00000000

The table above illustrates another special case. The smallest float value available when the
mantissa is represented by 1.<mantissa bits> is 1.17549435082229e-38. The smallest exponent
allowed is -126, represented in exponent bits by 00000001. For smaller values the exponent bits
are all reset and numbers other than zero are represented by setting mantissa bits. As long as there
is an implied leading 1, the smallest number available is 2-126; to get smaller values an exception is
made. The 1.<mantissa bits> interpretation is no longer used, and the number's magnitude is
determined purely by bit positions. For example, 1.40129846432482e-45 = 2-126-23, in other words
the smallest exponent minus the number of mantissa bits.

Clearly, when using these extra-small numbers precision is sacrificed. When there is no implied 1,
all bits to the left of the first set bit are leading zeros, which add no information to the number.
Therefore the absolutely smallest representable number (1.40129846432482e-45, with only the
lowest bit of the mantissa set) has only a single bit of precision.

primitive data types, variables and constants > console > Borland C++ Compiler

The precision of floating-point numbers is dictated by the number of bytes in the mantissa, and
varies between floating-point types. The exact precision for a particular type is most accurately
quoted as a number of binary digits. Conversion to precision quoted in decimal digits requires an
approximation.

The range quoted for each floating-point type earlier in this article was based on the smallest value
maintaining full precision. However, by accepting reduced precision, smaller numbers can be
obtained. Full precision in decimal digits and the range of positive values for each of the floating-
point types in the Borland C++ Compiler is as follows:

Type Full Precision
(digits)

Extreme Value

float 7 maximum 3.40282346600000000000*1038

minimum: full precision 1.17549435082229000000*10-38

minimum: reduced precision 1.40129846432482000000*10-45

double 15 maximum 1.79769313486231570000*10308

minimum: full precision 2.22507385850720200000*10-308

minimum: reduced precision 4.94065645841246540000*10-324

long double 19 maximum 1.18973149535723176495*104932

minimum: full precision 3.36210314311209350700*10-4932

minimum: reduced precision 3.64519953188247460000*10-4951

Loss of significance can raise unexpected problems when using floating-point data. Loss of
significance refers to situations where precision can inadvertently be lost through information being
discarded, potentially returning surprisingly poor results. When using floating-point types it is
important to bear in mind that floating-point variables have a tendency to become corrupted as
operations are performed on them. Often integers can be used instead of floating-point numbers,
for example by storing integral numerators and denominators, providing more accurate results.

	Introduction
	Concepts
	Source Code
	Compiling and Running
	Code Explanation
	Terms
	Further Comments
	Declarations
	Characters
	Floating-Point Storage

